346 research outputs found

    Gyrification in relation to cortical thickness in the congenitally blind

    Get PDF
    Greater cortical gyrification (GY) is linked with enhanced cognitive abilities and is also negatively related to cortical thickness (CT). Individuals who are congenitally blind (CB) exhibits remarkable functional brain plasticity which enables them to perform certain non-visual and cognitive tasks with supranormal abilities. For instance, extensive training using touch and audition enables CB people to develop impressive skills and there is evidence linking these skills to cross-modal activations of primary visual areas. There is a cascade of anatomical, morphometric and functional-connectivity changes in non-visual structures, volumetric reductions in several components of the visual system, and CT is also increased in CB. No study to date has explored GY changes in this population, and no study has explored how variations in CT are related to GY changes in CB. T1-weighted 3D structural magnetic resonance imaging scans were acquired to examine the effects of congenital visual deprivation in cortical structures in a healthy sample of 11 CB individuals (6 male) and 16 age-matched sighted controls (SC) (10 male). In this report, we show for the first time an increase in GY in several brain areas of CB individuals compared to SC, and a negative relationship between GY and CT in the CB brain in several different cortical areas. We discuss the implications of our findings and the contributions of developmental factors and synaptogenesis to the relationship between CT and GY in CB individuals compared to SC. F

    Opportunities for Technology and Tool Development: Understanding the Brain as a Whole

    Get PDF
    Major resources are now available to develop tools and technologies aimed at dissecting the circuitry and computations underlying behavior, unraveling the underpinnings of brain disorders, and understanding the neural substrates of cognition. Scientists from around the world shared their views around new tools and technologies to drive advances in neuroscience

    Optogenetics and deep brain stimulation neurotechnologies

    Full text link
    Brain neural network is composed of densely packed, intricately wired neurons whose activity patterns ultimately give rise to every behavior, thought, or emotion that we experience. Over the past decade, a novel neurotechnique, optogenetics that combines light and genetic methods to control or monitor neural activity patterns, has proven to be revolutionary in understanding the functional role of specific neural circuits. We here briefly describe recent advance in optogenetics and compare optogenetics with deep brain stimulation technology that holds the promise for treating many neurological and psychiatric disorders

    Optical polarization properties of (11–22) semi-polar InGaN LEDs with a wide spectral range

    Get PDF
    Electroluminescence polarization measurements have been performed on a series of semi-polar InGaN light emitting diodes (LEDs) grown on semi-polar (11–22) templates with a high crystal quality. The emission wavelengths of these LEDs cover a wide spectral region from 443 to 555 nm. A systematic study has been carried out in order to investigate the influence of both indium content and injection current on polarization properties, where a clear polarization switching at approximately 470 nm has been observed. The shortest wavelength LED (443 nm) exhibits a positive 0.15 polarization degree, while the longest wavelength LED (555 nm) shows a negative −0.33 polarization degree. All the longer wavelength LEDs with an emission wavelength above 470 nm exhibit negative polarization degrees, and they further demonstrate that the dependence of polarization degree on injection current enhances with increasing emission wavelength. Moreover, the absolute value of the polarization degree decreases with increasing injection current. In contrast, the polarization degree of the 443 nm blue LED remains constant with changing injection current. This discrepancy can be attributed to a significant difference in the density of states (DOS) of the valence subbands

    Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship

    Get PDF
    Optogenetics allows the manipulation of neural activity in freely moving animals with millisecond precision, but its application in Drosophila melanogaster has been limited. Here we show that a recently described red activatable channelrhodopsin (ReaChR) permits control of complex behavior in freely moving adult flies, at wavelengths that are not thought to interfere with normal visual function. This tool affords the opportunity to control neural activity over a broad dynamic range of stimulation intensities. Using time-resolved activation, we show that the neural control of male courtship song can be separated into (i) probabilistic, persistent and (ii) deterministic, command-like components. The former, but not the latter, neurons are subject to functional modulation by social experience, which supports the idea that they constitute a locus of state-dependent influence. This separation is not evident using thermogenetic tools, a result underscoring the importance of temporally precise control of neuronal activation in the functional dissection of neural circuits in Drosophila

    Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology

    Get PDF
    Motor neuron–specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease

    Overstimulation of NMDA Receptors Impairs Early Brain Development in vivo

    Get PDF
    BACKGROUND: Brains of patients with schizophrenia show both neurodevelopmental and functional deficits that suggest aberrant glutamate neurotransmission. Evidence from both genetic and pharmacological studies suggests that glutamatergic dysfunction, particularly with involvement of NMDARs, plays a critical role in the pathophysiology of schizophrenia. However, how prenatal disturbance of NMDARs leads to schizophrenia-associated developmental defects is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Glutamate transporter GLAST/GLT1 double-knockout (DKO) mice carrying the NMDA receptor 1 subunit (NR1)-null mutation were generated. Bouin-fixed and paraffin-embedded embryonic day 16.5 coronal brain sections were stained with hematoxylin, anti-microtubule-associated protein 2 (MAP2), and anti-L1 antibodies to visualize cortical, hippocampal, and olfactory bulb laminar structure, subplate neurons, and axonal projections. NR1 deletion in DKO mice almost completely rescued multiple brain defects including cortical, hippocampal, and olfactory bulb disorganization and defective corticothalamic and thalamocortical axonal projections. CONCLUSIONS/SIGNIFICANCE: Excess glutamatergic signaling in the prenatal stage compromises early brain development via overstimulation of NMDARs

    Median raphe region stimulation alone generates remote, but not recent fear memory traces

    Get PDF
    The median raphe region (MRR) is believed to control the fear circuitry indirectly, by influencing the encoding and retrieval of fear memories by amygdala, hippocampus and prefrontal cortex. Here we show that in addition to this established role, MRR stimulation may alone elicit the emergence of remote but not recent fear memories. We substituted electric shocks with optic stimulation of MRR in C57BL/6N male mice in an optogenetic conditioning paradigm and found that stimulations produced agitation, but not fear, during the conditioning trial. Contextual fear, reflected by freezing was not present the next day, but appeared after a 7 days incubation. The optogenetic silencing of MRR during electric shocks ameliorated conditioned fear also seven, but not one day after conditioning. The optogenetic stimulation patterns (50Hz theta burst and 20Hz) used in our tests elicited serotonin release in vitro and lead to activation primarily in the periaqueductal gray examined by c-Fos immunohistochemistry. Earlier studies demonstrated that fear can be induced acutely by stimulation of several subcortical centers, which, however, do not generate persistent fear memories. Here we show that the MRR also elicits fear, but this develops slowly over time, likely by plastic changes induced by the area and its connections. These findings assign a specific role to the MRR in fear learning. Particularly, we suggest that this area is responsible for the durable sensitization of fear circuits towards aversive contexts, and by this, it contributes to the persistence of fear memories. This suggests the existence a bottom-up control of fear circuits by the MRR, which complements the top-down control exerted by the medial prefrontal cortex
    • …
    corecore